Вестник УКЦ АПИК: Системы вентиляции и кондиционирования аэровокзалов, аэропортов

В настоящее время все чаще приходится слышать о проектах модернизации зданий аэровокзалов в различных городах России, так как, построенные несколько десятков лет назад, они устарели и неспособны обеспечить ни распределение увеличенного пассажиропотока, ни комфорта, ни достаточного уровня безопасности и разделения зон доступа.

Среди модернизируемых систем неизменно присутствуют и системы вентиляции и кондиционирования, об особенностях построения которых речь и пойдет ниже.

Также отметим, что один из примеров модернизации климатических систем аэровокзалов был опубликован в нашем журнале ранее («МИР КЛИМАТА» № 56, статья «Вестник УКЦ АПИК: Реконструкция аэропорта в Норильске»).

Терминология

Для начала разберемся с терминологией, поскольку зачастую невозможность найти ту или иную информацию по инженерным сетям для аэровокзалов связана именно с неправильной трактовкой элементарных терминов.

Так, по запросу «вентиляция аэропорта» действительно сложно найти полезную информацию. Причина заключается в том, что аэропорт — это комплекс сооружений, предназначенный для приема, отправки, базирования воздушных судов и обслуживания воздушных перевозок. Таким образом, под аэропортом понимаются сразу летное поле, пассажирский и грузовой терминалы, вспомогательные сооружения и прочее.

Непосредственно здание для обслуживания пассажиров воздушного транспорта и операций с багажом именуется аэровокзалом. Таким образом, более правильный и эффективный запрос — «вентиляция аэровокзалов».

Поэтому было бы неправильно говорить о «кондиционировании аэропорта». Более правильная формулировка — «кондиционирование аэровокзала» или «кондиционирование аэровокзала аэропорта». Аналогично можно говорить о «вентиляции аэровокзала», «системах поддержания микроклимата аэровокзала аэропорта».

Кроме того, в подобных проектах часто используются термины «пропускная способность» и «расчетная вместимость». Ниже мы приводим их определения.

Пропускная способность — основной эксплуатационный показатель пассажирской железнодорожной станции, пассажирского района морского или речного порта, аэропорта, определяемый количеством транспортных средств, обрабатываемых ими за единицу времени (час, сутки, месяц, год). Пропускная способность вокзала определяется расчетным количеством пассажиров и посетителей, обслуживаемых в аэровокзалах в течение расчетного периода.

Расчетная вместимость — показатель, производный от пропускной способности, равный общему числу пассажиров и посетителей, одновременно находящихся в здании вокзала.

Нормативная документация

Из специальной нормативной документации по построению инженерных систем аэровокзалов можно выделить «Руководство по проектированию аэровокзалов аэропортов», выпущенное и утвержденное ГПИ и НИИ «Аэропроект» в 1981 году и вступившее в силу в 1982 году. В руководстве приведен порядок расчета вместимости аэровокзалов и его зон, площадей и строительных объемов, перечислены требования к проектированию инженерно-технического оборудования по водоснабжению и водоотведению, отоплению, вентиляции и кондиционированию воздуха, электроснабжению, электрооборудованию и электроосвещению.

Однако очевидно, что некоторые требования тридцатилетней давности уже устарели, а какой-либо актуализированной редакции данного документа нет. Тем не менее необходимо подчеркнуть, что устаревают лишь технологические особенности построения систем и некоторые конструктивные решения. Сама же суть системы, многие коэффициенты, методика расчета едины для всех времен, и пользоваться более старыми документами зачастую даже более полезно, поскольку они содержательнее в этом плане.

Также отметим документ, выпущенный в 1985 году все тем же ГПИ и НИИ «Аэропроект», — «Руководство по проектированию аэропортов местных воздушных линий». Оно не содержит конкретных требований по проектированию и устройству инженерных систем аэровокзалов, но может быть полезно по части категорийности аэровокзалов, составу сооружений и другой общей информации.

Современной нормативной документации, акцентированной на аэровокзалах, на данный момент нет, однако в 2000 году была принята более общая методическая документация — МДС 32–1.2000 «Рекомендации по проектированию вокзалов», касающаяся вокзалов всех типов (аэровокзалов, железнодорожных, автобусных, речных).

В целом при разработке климатических систем для аэровокзалов аэропортов следует учитывать требования следующих общих нормативных документов:

  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование. Актуализированная версия СНиП 41-01–2003»;
  • МДС 32–1.2000 «Рекомендации по проектированию вокзалов»;
  • «Руководство по проектированию аэровокзалов аэропортов», ГПИ и НИИ «Аэропроект», 1982 г.;
  • СНиП 31-06–2009 (Общественные здания и сооружения. Актуализированная редакция СНиП 2.08.02–89 * );
  • СП 51.13330.2011 «Защита от шума. Актуализированная редакция СНиП 23-03–2003».

Однако еще раз повторим, что современной специализированной нормативной документации по климатическим системам аэровокзалов нет. Даже в наиболее близком к данным объектам нормативном документе МДС 32–1.2000 пункт 6.2 гласит: «Отопление, вентиляцию и кондиционирование воздуха вокзалов следует проектировать в соответствии со СНиП 2.04.05–91 * » (На территории Российской Федерации следует обращаться к СНиП 41-01–2003 или к СП 60.13330.2012).

Предпроектные оценки

Перед началом проекта часто требуется дать грубые оценки мощности холодильных систем и производительности вентиляционных установок.

При этом используются известные формулы экспресс-расчетов, которые мы приводить не будем, предложив вашему вниманию некоторые таблицы, которые могут помочь с определением исходных данных для подобных расчетов.

Так, согласно МДС 32–1.2000 расчетная вместимость вокзала равна числу единовременно находящихся в нем пассажиров и посетителей (встречающих и провожающих людей, наводящих справки, приобретающих билеты) и устанавливается отдельно для пассажиров дальнего и местного сообщения и отдельно для пассажиров пригородного сообщения.

Расчетная вместимость вокзала N для пассажиров дальних и местных сообщений определяется по формуле:

Системы вентиляции и кондиционирования аэровокзалов, аэропортов

где C — среднесуточный поток отправления пассажиров дальнего и местного сообщения за год;
K1 — коэффициент неравномерности, учитывающий отношение среднесуточного потока отправления пассажиров за пиковый период к среднесуточному потоку отправления за год (на расчетный год эксплуатации). Понятие пикового периода следует дифференцировать применительно к условиям работы различных видов транспорта. K1 принимают: для малых вокзалов — 1,1–1,25; для средних вокзалов — 1,2–1,3; для больших вокзалов — 1,2–1,35; для крупных вокзалов — 1,2–1,4. Максимальное значение коэффициента K1 принимают при неравномерном потоке пассажиров и малой частоте движения поездов; при регулярном (в течение суток) движении поездов и равномерном потоке пассажиров принимаются минимальные значения;
К2 — коэффициент, учитывающий наличие прибывших пассажиров и посетителей. К2 для пассажиров дальнего и местного сообщения следует принимать от 1,1 до 1,3; для пригородных пассажиров — 1;
Н — норма расчетной вместимости вокзала, выражается в процентах от среднесуточного потока пассажиров отправления.

Состав и площади основных помещений аэровокзалов в аэропортах устанавливаются, исходя из их пропускной способности. На стадии предпроектных разработок рекомендуется пользоваться данными табл. 1, где приводятся площади застройки основных зон аэровокзального комплекса в зависимости от пропускной способности аэропорта (годовой или часовой).

Таблица 1. Площади застройки основных зон аэровокзального комплекса (соответствует таблице 15 МДС 32–1.2000)

Основные зоны аэровокзального комплекса Площадь застройки, тыс.м, основных зон аэровокзального комплекса в аэропортах с годовой пропускной способностью, млн.пас.
0,1 0,27 0,5 1,2 1,6 2,0 2,9 4 4,9 7 8,5 10
Часовая пропускная способность, пас/ч
100 200 400 600 800 1000 1200 1500 1800 2000 2500 3000
Аэровокзал 1,5 2 3 6 8 9 11 14 16 19 23 26
Перрон 1,1 18 40 54 62 88 108 135 161 178 212 267
Привокзальная площадь 4 5 8 11 14 18 22 27 32 36 44 53
ИТОГО: 16,5 25 51 71 84 115 141 176 209 233 279 346

Поддерживаемые параметры микроклимата

Наиболее полно параметры микроклимата для различных помещений аэровокзала отражены в п. 6.2.2 МДС 32–1.2000.

Расчетную температуру воздуха для отопления и кратность воздухообмена в помещениях аэровокзалов рекомендуется принимать по табл. 2.

Таблица 2. Расчетная температура воздуха для отопления и кратность воздухообмена в помещениях аэровокзалов (соответствует таблице 18 МДС 32–1.2000)

Помещения Расчетная температура воздуха для отопле ния,  °C Кратность или объем воздухообмена в час
приток вытяжка
Операционные и кассовые залы, объединенные пассажирские залы, распределительные залы, залы ожидания 18 По расчету не менее 20 м3 наружного воздуха на 1 чел
При невозможности естественного проветривания — 60 м3 на 1 чел
Кабины билетных и багажных касс 18 100 м3 на 1 кабину
Вестибюли, коридоры, переходы, главные лестницы, пешеходные тоннели, галереи 10 1 1
Помещения приема и выдачи багажа и ручной клади 16 2 1
Комнаты матери и ребенка:
приемная и гардероб 18 1 1
спальни и игровые 20 1 1
детские уборные 18 50 м3 на 1 унитаз;
25 м3 на 1 писсуар
Комнаты длительного пребывания пассажиров 18 1 1
Медицинские пункты:
комнаты врачей 20 2 1,5
помещения временного пребывания больных,
уборные
18 50 м3 на 1 унитаз;
25 м3 на 1 писсуар
Помещения отделений связи, сберегательных касс, транспортных агентств, радиоузлы, диспетчерские 18 3 2
Помещения военного коменданта, транспортной полиции и другие служебные помещения, комнаты депутатов, комнаты для иностранных туристов 18 1,5 1,5
Помещения для хранения багажа и ручной клади 16 1 2
Уборные общего пользования 15 2 100 м3 на 1 санитарный прибор
Курительные 15 2 10

В проектах средних, больших и крупных аэровокзалов, предназначенных для строительства в III и IV климатических районах, предусматривают кондиционирование воздуха в операционных залах, залах ожидания, залах кафе и ресторанов, комнатах для иностранных туристов и в комнатах матери и ребенка.

Вентиляция аэровокзалов

Основные требования по вентиляции изложены в «Руководстве по проектированию аэровокзалов аэропортов» и СНиП 31-06–2009.

Во всех помещениях аэровокзала следует предусматривать общеобменную и местную приточно-вытяжную вентиляцию с механическим и естественным побуждением. Подачу приточного воздуха, как правило, следует производить в зоны и помещения с постоянным пребыванием людей через отверстия воздухораспределителей, расположенных выше рабочей зоны.

Температуру и скорость выхода воздуха из воздухораспределителей следует определять расчетом, с тем чтобы в рабочей зоне были обеспечены нормируемые метеорологические условия при наименьших объемах приточного воздуха и наименьшем числе воздухораспределителей.

Использование ячеистых потолков в зданиях аэровокзалов
Рис. 1. Использование
ячеистых потолков в 
зданиях аэровокзалов

Отметим, что при использовании ячеистых потолков (рис. 1) воздухораспределители не видны, поэтому проблема вписывания воздухораспределителей в интерьер внутренних помещений аэровокзала отпадает.

При определении температуры приточного воздуха необходимо учитывать его нагрев в вентиляторе и воздуховодах на 1 °C. Таким образом, при нагреве воздуха зимой и охлаждении в центральных кондиционерах летом необходимо учитывать этот запас в 1 °C.

Количество воздуха, удаляемого из помещений, следует принимать в размере 90 % от количества приточного воздуха. Для повышения энергоэффективности климатических систем рекомендуется использовать рециркуляцию воздуха. Рециркуляцию воздуха следует применять в операционных зонах, зонах ожидания, зоне выдачи багажа и торговых залах предприятий общественного питания. Централизованная рециркуляция воздуха в служебных и административных помещениях не допускается. Минимальный расход свежего приточного воздуха при рециркуляции составляет 20 %.

Воздухозаборные устройства систем приточной вентиляции и кондиционирования воздуха следует размещать в стенах здания аэровокзала на высоте не менее 2 м от земли. При размещении воздухозаборных устройств отдельно от здания аэровокзала, в зеленой зоне, расстояние от земли до низа проема следует принимать не менее 1 м. При размещении воздухозаборных устройств на плоских кровлях и кровлях с уклоном не более 25 % на расстояние более 20 м от наружных стен низ проема следует располагать на высоте не менее 3 м от кровли. При расстоянии менее 20 м от наружных стен низ проема воздухозабора следует располагать на высоте не менее 2 м от кровли.

Расчет воздухообмена

При расчете воздухообмена по людям необходимо подразделять их на сотрудников аэровокзала (охрана, диспетчеры, сотрудники на стойках регистрации, продавцы, носильщики) и посетителей (пассажиров). Об определении принимаемой в расчетах численности пассажиров уже говорилось выше в разделе «Предпроектные оценки» и будет сказано ниже в подразделе «Теплопритоки от людей».

При этом расчетное количество свежего воздуха на одного сотрудника должно составлять 60 м3/ч, а на одного посетителя — 20 м3/ч.

В целом количество воздуха, подаваемого в помещения для обеспечения требуемых условий воздушной среды, следует определять по следующим формулам:

Вентиляционные установки Daikin в терминале «1А» международного аэропорта «Казань». В общей сложности для подачи свежего воздуха используются 10 приточно-вытяжных установок Daikin производительностью от 11 085 до 46 000 м3/ч
Рис. 2. Вентиляционные установки Daikin в терминале
«1А» международного аэропорта «Казань».
В общей сложности для подачи свежего воздуха исполь-
зуются 10 приточно-вытяжных установок Daikin
производительностью от 11 085 до 46 000 м3

при расчете по избыткам явного тепла:

Пассажирские залы аэровокзалов, как правило, имеют значительную высоту, поэтому обязательно следует выполнять расчет температуры вытяжного воздуха, учитывая при этом градиент температуры воздуха по высоте
Рис. 3. Пассажирские залы аэровокзалов, как правило,
имеют значительную высоту, поэтому обязательно
следует выполнять расчет температуры вытяжного
воздуха, учитывая при этом градиент температуры
воздуха по высоте

при расчете с избытком полного тепла:

Системы вентиляции и кондиционирования аэровокзалов, аэропортов

где Gв — количество воздуха, кг/с;
Qя, Qп — избытки явного и полного тепла, кВт;
tпр, tух — температура,  °C, соответственно приточного и уходящего из помещения воздуха;
Iпр, Iух — теплосодержание (энтальпия), кДж/кг, соответственно приточного и уходящего из помещения воздуха.

Температуру уходящего воздуха при расположении вытяжных или рециркуляционных решеток выше рабочей зоны для теплого периода года следует определять по формуле:

Системы вентиляции и кондиционирования аэровокзалов, аэропортов

где tв — расчетная температура воздуха в рабочей зоне помещения,  °C;
h — расстояние от пола до центра вытяжных или рециркуляционных решеток, м;
φt — среднее увеличение (градиент) температуры внутреннего воздуха по высоте помещения,  °C/м. Градиент температуры принимать в зависимости от удельных избытков явного тепла q:

при q < 40 Вт/м3 — φt = 0,5 °C/м,
при 40 ≥ q ≥ 80 Вт/м3 — φt = 1,2 °C/м,
при q > 80 Вт/м3 — φt = 1,5 °C/м.

Отметим, что, учитывая значительную высоту залов аэровокзала (рис. 3), не следует пренебрегать расчетом уходящего воздуха.

Кондиционирование аэровокзалов

Безусловно, аэровокзалы относятся к крупным объектам с большими тепловыделениями, поэтому имеет смысл использовать только мощные холодильные системы. Это могут быть либо мультизональные системы кондиционирования, либо, что, пожалуй, более вероятно, системы «чиллер — фэнкойл». Также могут быть использованы центральные кондиционеры.

В зависимости от архитектурного проекта здания аэровокзала наружное оборудование может размещаться на кровле, на прилегающей территории или реже в специально отведенных зонах технических этажей.

Для кондиционирования больших залов наиболее оптимальным решением видится использование кассетных кондиционеров (рис. 1). Для небольших помещений — согласно общим принципам выбора типа внутренних блоков кондиционеров.

Основной задачей, безусловно, является правильный расчет теплопритоков, которые включают в себя:

  • теплопритоки через остекление от солнечной радиации;
  • теплопритоки через ограждающие конструкции;
  • теплопритоки от системы вентиляции;
  • теплопритоки от освещения;
  • теплопритоки от людей;
  • теплопритоки от оборудования.

В целом методика теплового расчета со всеми необходимыми коэффициентами и справочными данными приведена в «Руководстве по проектированию аэровокзалов аэропортов» (1982 г.). Ниже мы подробнее остановимся на некоторых особенностях определения теплопритоков через окна, от людей и от оборудования.

Теплопритоки через остекление

Остекление пассажирского терминала аэропорта Luchthaven Brussel-Nationaal, г. Брюссель Бельгия
Рис. 4. Остекление пассажирского терминала аэропорта
Luchthaven Brussel-Nationaal, г. Брюссель (Бельгия) (фото автора)

При расчете теплопритоков через оконные проемы современных аэровокзалов, отличающихся значительной площадью остекления (рис. 4, 5), необходимо учитывать вид устанавливаемого стекла. Поскольку разного рода стекла пропускают разное количество света и тепла, то результаты расчетов для различных типов стекла могут отличаться в десятки раз.

Остекление пассажирского терминала аэропорта «Домодедово», г. Москва
Рис. 5. Остекление пассажирского терминала аэропорта
«Домодедово», г. Москва (фото автора)

При тотальном остеклении используются специальные виды стекла, пропускающие на порядок меньше солнечной радиации, нежели обычные стеклопакеты. При этом одной из проблем является поиск необходимых коэффициентов для выбранного типа стекла. Подобную информацию следует сразу запрашивать у генподрядчика или, что еще лучше, у компании-производителя данного вида остекления, пусть даже это будет запрос за рубеж.

Еще один важный фактор, который необходимо учесть при расчете теплопритоков через остекление, — его направленность по сторонам света и угол наклона к поверхности земли. Если с первым пунктом все понятно — стороны света, как правило, учитываются всегда, то про наклон остекления нередко забывают. В то же время остекление того же бельгийского аэровокзала (рис. 4) имеет наклон, причем не вверх (к солнцу), а, наоборот, вниз, к земле. При этом очевидно, что в наиболее жаркие часы, когда солнце находится в высшей точке, прямые солнечные лучи в здание аэровокзала не попадают.

Теплопритоки от людей

В данном случае основная задача — определить число одновременно находящихся в аэровокзале людей. Подобные оценки производятся, исходя из заданного суточного пассажиропотока, умноженного на среднюю длительность (в часах) нахождения одного человека в здании аэровокзала (то есть, по сути, умноженного на промежуток времени от входа пассажира в аэровокзал до посадки в самолет) и разделенного на 24 (число часов в сутках). К полученной величине прибавляется численность постоянных сотрудников аэровокзала, к которым относятся рабочие места на стойках регистрации, обслуживающий персонал, охрана и другие. Данные цифры следует запрашивать у генерального подрядчика.

Численность одновременно находящихся в здании аэровокзала человек:

Системы вентиляции и кондиционирования аэровокзалов, аэропортов

где: Nчел — искомая численность одновременно находящихся в здании аэровокзала человек, чел.;
Pсут — суточный пассажиропоток, чел./сут;
Т — средняя длительность нахождения одного человека в здании аэровокзала, ч;
Nсотр — численность постоянных сотрудников аэровокзала, чел.

Теплопритоки от оборудования

В данном вопросе необходимо тщательно подойти к перечню и техническим характеристикам оборудования, которое установлено или может быть установлено в помещениях аэровокзалов. Здесь подразумевается и оборудование на пунктах досмотра пассажиров, и оборудование арендаторов, оборудование рабочих мест сотрудников на стойках регистрации, и прочее.

Общий перечень оборудования следует запрашивать у генерального подрядчика и в обязательном порядке утверждать во избежание последующих проблем при сдаче проекта.

Отопление аэровокзалов

Тема отопления аэровокзалов не основная для данной статьи, однако в помощь инженерам приведем некоторые требования, содержащиеся в нормативной документации.

Отопление следует предусматривать во всех помещениях аэровокзала, кроме холодильных камер, трансформаторных подстанций, помещений распределительных устройств и других помещений, указанных в задании на проектирование.

С целью повышения эффективности использования тепловых и энергетических ресурсов на входе в здание аэровокзала рекомендуется устанавливать тепловые завесы.

Согласно «Руководству по проектированию аэровокзалов аэропортов» от 1982 года температура на поверхности нагревательных приборов не должна превышать 95 °C во всех помещениях аэровокзала. Нагревательные приборы следует размещать у наружных стен под окнами. При наличии в аэровокзале витражей нагревательные приборы следует располагать по всей длине светового проема.

Укрупненный расчет теплопотерь следует определять по формуле:

Системы вентиляции и кондиционирования аэровокзалов, аэропортов

где q — удельная тепловая характеристика здания, Вт/(м3 •  °C);
Р — периметр здания (определяется на уровне земли), м;
S — площадь застройки, м2;
ρ0 — коэффициент остекления, отношение площади остекления к площади наружных стен;
Кст, Кок, Кпот, Кпол — средние коэффициенты теплопередачи соответственно стен, окон, потолка, пола, Вт/(м2 •  °C);
V — объем здания, м3.

Кроме того, в приложении Д «Системы отопления (теплоснабжения)» к СП 60.13330.2012 «Отопление, вентиляция и кондиционирование. Актуализированная версия СНиП 41-01–2003» содержится информация о возможных системах отопления и температурах теплоносителя (табл. 3).

Таблица 3. Выкопировка из таблицы Д.1 Приложения Д СП 60.13330.2012

Наименование помещения Система отопления (теплоснабжения), отопительные приборы, теплоноситель, максимально допустимая температура теплоносителя или теплоотдающей поверхности
Д.9 Пассажирские залы вокзалов, аэропортов Воздушная система отопления (в соответствии с пп. 7.1.14, 7.1.15 и 7.1.16 СП 60.13330.2012)
Водяная с радиаторами и конвекторами при температуре теплоносителя не более 150 °C
Водяная с нагревательными элементами, встроенными в наружные стены, перекрытия и полы (в соответствии с пп. 6.3.3, 6.4.7 и 6.4.8 СП 60.13330.2012)
Электрическая и газовая с температурой на теплоотдающей поверхности не более 150 °C (в соответствии с пп. 4.6, 6.4.12 и 6.4.14 СП 60.13330.2012)

Последующее сервисное обслуживание

Ближе к окончанию монтажных и приемо-сдаточных работ следует задуматься о заключении сервисного контракта на обслуживание систем вентиляции и кондиционирования. Вообще говоря, это очень важный момент, о котором часто забывают, основываясь на ошибочном мнении, что систему смонтировали и запустили и далее она будет самостоятельно работать.

На самом деле наиболее критичным является как раз первый год эксплуатации систем вентиляции и кондиционирования. Причина этого — необходимость опытным путем вывести системы на оптимальный режим работы, исправить вероятные ошибки проекта и монтажа, учесть вновь появившиеся пожелания сотрудников аэровокзала. Кроме того, как правило, именно в первый год появляются разнообразные пожелания по функциональному назначению тех или иных общественных или технических площадей аэровокзала, а это все находит свое отражение и в наладке систем: где-то требуется подкорректировать расходы воздуха, где-то изменить температурные настройки и так далее.

Один из наиболее часто встречающихся в последнее время вариантов — прописывание в контракт на строительно-монтажные работы еще и сервисной поддержки на первые один или два года функционирования системы. Подобный подход действительно весьма полезен и избавляет заказчика от указанных выше проблем доводочной наладки климатических систем.

Однако впоследствии в любом случае потребуется сервисный контракт. Очень важно, чтобы между гарантийным контрактом со строительно-монтажной организацией и контрактом на обслуживание с сервисной компанией не было временного зазора, поскольку в противном случае виноватых не найти: все недостатки будут списаны именно на этот период, когда системы были в буквальном смысле бесхозными.

В качестве примера объема сервисных работ можно привести перечень, который был обнаружен в конкурсной документации на сервисное обслуживание аэровокзала аэропорта в городе Томске:

  • Осмотр состояния оборудования, его частей, креплений, трубопроводов, воздуховодов на наличие неплотностей, утечек холодоносителя, масла, состояние электрокабелей, фильтров, запорной арматуры.
  • Тестирование режимов работы, систем автоматики управления, защитных устройств, регулирующих клапанов, достаточности заправки хладагента.
  • Замена фильтров.
  • Настройка режимов работы, регуляторов температуры, защитных устройств, диффузоров, вентиляционных решеток.
  • Регулировка расхода воздуха по помещениям.
  • Чистка вентиляционных решеток, поверхностей теплообменников, частей оборудования, лопастей вентиляторов, электрических соединений, дренажных поддонов.
  • Дозаправка хладагентом, тепло-, холодоносителем, маслом, запуск и остановка чиллера с заполнением и сливом воды из системы.
  • Проведение инструктажей оперативного персонала по правилам пользования оборудованием установок вентиляции и кондиционирования.
  • Ведение необходимой технической документации (журналы, протоколы), в том числе составление дефектных актов по оборудованию установок вентиляции и кондиционирования, требующих капитального ремонта или замены, а также выполнение необходимой документации для предъявления в Ростехнадзор.
  • Участие представителя специализированной организации в работе комиссий, назначаемых приказом ООО «Аэропорт ТОМСК».

Заключение

Подводя итоги, отметим, что сложность проектирования инженерных сетей аэровокзалов заключается, во-первых, в том, что данные объекты весьма редки, и, во-вторых, в отсутствии актуальной и современной нормативной документации. Тем не менее в ряде вопросов можно полагаться на руководства тридцатилетней давности.

Основными особенностями аэровокзалов с точки зрения климатических систем являются: большое количество людей, насыщенность залов арендуемыми площадями, высокими потолками, зачастую весьма экзотическим дизайном, повышенными площадями остекления. Особое значение для аэровокзалов принимают технологии рециркуляции и рекуперации.

Еще до завершения строительно-монтажных работ необходимо задуматься о заключении сервисных контрактов.

Юрий Хомутский,
технический редактор журнала «МИР КЛИМАТА»



наши проекты
  • АПИК
  • Университет климата
  • Выставка «Мир климата»
  • АПИК-тест